Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071511

ABSTRACT

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammasomes , Drug Repositioning , Diabetes Mellitus, Type 2/drug therapy , Aging , Glucose/therapeutic use , TOR Serine-Threonine Kinases , Sodium , Ketones/therapeutic use , Fatty Acids/therapeutic use
2.
Nat Commun ; 13(1): 2318, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815536

ABSTRACT

Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. Here we show that poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2. We report data from a prospective observational study enroling healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy) and followed for one year (5 visits, follow-up 346 ± 49 days) after one full vaccination cycle. Considering the 494 subjects completing the study, patients with good glycaemic control (HbA1c one-year mean < 7%) show a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). The one-year mean of HbA1c is linearly associated with the incidence of breakthrough infections (Beta = 0.068; 95% confidence interval [CI], 0.032-0.103; p < 0.001). The comparison of patients with poor and good glycaemic control through Cox regression also show an increased risk for patients with poor control (adjusted hazard ratio [HR], 0.261; 95% CI, 0.097-0.700; p = 0.008). Among other factors, only smoking (HR = 0.290, CI 0.146-0.576 for non-smokers; p < 0.001) and sex (HR = 0.105, CI 0.035-0.317 for females; p < 0.001) are significantly associated with the incidence of breakthrough infections.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Glycated Hemoglobin , Glycemic Control , Humans , RNA, Messenger , SARS-CoV-2
3.
J Clin Med ; 11(6)2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1742504

ABSTRACT

BACKGROUND/AIMS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded single-stranded RNA virus, a member of the subgenus Sarbecovirus (beta-CoV lineage B) and responsible for the coronavirus disease 2019 (COVID-19). COVID-19 encompasses a large range of disease severity, from mild symptoms to severe forms with Intensive Care Unit admission and eventually death. The severe forms of COVID-19 are usually observed in high-risk patients, such as those with type two diabetes mellitus. Here, we review the available evidence linking acute and chronic hyperglycemia to COVID-19 outcomes, describing also the putative mediators of such interactions. FINDINGS/CONCLUSIONS: Acute hyperglycemia at hospital admission represents a risk factor for poor COVID-19 prognosis in patients with and without diabetes. Acute and chronic glycemic control are both emerging as major determinants of vaccination efficacy, disease severity and mortality rate in COVID-19 patients. Mechanistically, it has been proposed that hyperglycemia might be a disease-modifier for COVID-19 through multiple mechanisms: (a) induction of glycation and oligomerization of ACE2, the main receptor of SARS-CoV-2; (b) increased expression of the serine protease TMPRSS2, responsible for S protein priming; (c) impairment of the function of innate and adaptive immunity despite the induction of higher pro-inflammatory responses, both local and systemic. Consistently, managing acute hyperglycemia through insulin infusion has been suggested to improve clinical outcomes, while implementing chronic glycemic control positively affects immune response following vaccination. Although more research is warranted to better disentangle the relationship between hyperglycemia and COVID-19, it might be worth considering glycemic control as a potential route to optimize disease prevention and management.

4.
iScience ; 24(8): 102898, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1322153

ABSTRACT

The clinical benefit of convalescent plasma (CP) for patients with coronavirus disease (COVID)-19 is still debated. In this systematic review and meta-analysis, we selected 10 randomized clinical trials (RCTs) and 15 non-randomized studies (total number of patients = 22,591) of CP treatment and evaluated two different scenarios: (1) disease stage of plasma recipients and (2) donated plasma antibody titer, considering all-cause mortality at the latest follow-up. Our results show that, when provided at early stages of the disease, CP significantly reduced mortality: risk ratio (RR) 0.72 (0.68, 0.77), p < 0.00001, while provided in severe or critical conditions, it did not (RR: 0.94 [0.86, 1.04], p = 0.22). On the other hand, the benefit on mortality was not increased by using plasma with a high-antibody titer compared with unselected plasma. This meta-analysis might promote CP usage in patients with early-stage COVID-19 in further RCTs to maximize its benefit in decreasing mortality, especially in less affluent countries.

SELECTION OF CITATIONS
SEARCH DETAIL